Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach

نویسنده

  • T. Tony Cai
چکیده

We study wavelet function estimation via the approach of block thresholding and ideal adaptation with oracle. Oracle inequalities are derived and serve as guides for the selection of smoothing parameters. Based on an oracle inequality and motivated by the data compression and localization properties of wavelets, an adaptive wavelet estimator for nonparametric regression is proposed and the optimality of the procedure is investigated. We show that the estimator achieves simultaneously three objectives: adaptivity, spatial adaptivity and computational efficiency. Specifically, it is proved that the estimator attains the exact optimal rates of convergence over a range of Besov classes and the estimator achieves adaptive local minimax rate for estimating functions at a point. The estimator is easy to implement, at the computational cost of O n . Simulation shows that the estimator has excellent numerical performance relative to more traditional wavelet estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Adaptive Wavelet Estimation of a Derivative And Other Related Linear Inverse Problems

We consider a block thresholding and vaguelet–wavelet approach to certain statistical linear inverse problems. Based on an oracle inequality, an adaptive block thresholding estimator for linear inverse problems is proposed and the asymptotic properties of the estimator are investigated. It is shown that the estimator enjoys a higher degree of adaptivity than the standard term-by-term thresholdi...

متن کامل

Smooth James-Stein model selection against erratic Stein unbiased risk estimate to select several regularization parameters

Smooth James-Stein thresholding-based estimators enjoy smoothness like ridge regression and perform variable selection like lasso. They have added flexibility thanks to more than one regularization parameters (like adaptive lasso), and the ability to select these parameters well thanks to a unbiased and smooth estimation of the risk. The motivation is a gravitational wave burst detection proble...

متن کامل

The Root-Unroot Algorithm for Density Estimation as Implemented via Wavelet Block Thresholding

We propose and implement a density estimation procedure which begins by turning density estimation into a nonparametric regression problem. This regression problem is created by binning the original observations into many small size bins, and by then applying a suitable form of root transformation to the binned data counts. In principle many common nonparametric regression estimators could then...

متن کامل

Block thresholding for a density estimation problem with a change-point

We consider a density estimation problem with a change-point. We develop an adaptive wavelet estimator constructed from a block thresholding rule. Adopting the minimax point of view under the Lp risk (with p ≥ 1) over Besov balls, we prove that it is near optimal.

متن کامل

A Data-Driven Block Thresholding Approach to Wavelet Estimation

A data-driven block thresholding procedure for wavelet regression is proposed and its theoretical and numerical properties are investigated. The procedure empirically chooses the block size and threshold level at each resolution level by minimizing Stein’s unbiased risk estimate. The estimator is sharp adaptive over a class of Besov bodies and achieves simultaneously within a small constant fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998